
International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015 367
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Improved Flexible Task Scheduling for
Heterogeneous Cluster of Hadoop

Mr. Prashant P. Mali, Mrs.Sunita S. Dhotre

Abstract— Native task scheduling algorithm of Hadoop does not meet the performance requirements of heterogeneous
Hadoop clusters. There are three native job schedulers of Hadoop i.e. First in First out (FIFO), Fair scheduler and Capacity
schedulers. FIFO has a known drawback of no concept of prioritization of the jobs and no consideration of job size while
scheduling the jobs. In Fair Scheduling the allocated resource may go unused if the user has submitted lesser number of
jobs. The Capacity scheduler is more beneficial for larger jobs because jobs are prioritized based on their size. To
overcome these drawbacks in this paper a flexible task scheduling is proposed which works on runtime workload
adjustment strategy and size of job which is much like the adaptive scheduler but with a difference that instead of user
defined business goals it relies on the node availability and run time task allocation.

Index Terms— Hadoop, Task Scheduling, Heterogeneous Cluster, Flexible Scheduling, dynamic workload.

——————————  ——————————

1 INTRODUCTION
loud computing as we all know is a very highly scalable
technology with broad availability. Many well-known
organizations have developed public cloud computing

platforms [3] and working towards enhancing cloud platform
which is more dynamic, elastic and efficient. For example,
Amazon Cloud [5], Google implement Google App Engine [2].

Hadoop [1] is a framework which provides distributed pro-
cessing of large data sets across cluster of computers. It can be
applied for structured and unstructured data search, data
analysis and data mining. It is based on share nothing archi-
tecture i.e. nodes does not talk to each other. The file system of
Hadoop is such that instead of data moving to processes, the
processes move towards data thus the importance of effective
job scheduling and task scheduling is primary objective. Job
and task are different concepts in Hadoop. When a user sub-
mits a transaction, Hadoop will create a job and put it in the
queue of jobs waiting for the job scheduler to dispatch it.
Then, the job will be divided into a series of tasks, which can
be executed in parallel [8], [9]. Scheduler plays a very im-
portant role to achieve performance levels in Hadoop system.
Task scheduling technology is one way to control running task
and allocate computer resource which is beneficial to improve
performance of Hadoop platform.

There are five task scheduling strategies widely applicable
to Hadoop.

1. LATE (Longest Approximate Time to End): LATE sched-
uler [6] always speculatively executes the task. And this
scheduler execute those task which are farthest from into
future. Basically, it works on following two assumptions:
a) consistent Task progress on each node b) consistent
computation of tasks at all nodes.

2. Dynamic Priority Scheduling Method: This methods sup-
ports distribution of capacity dynamically. And it is based
on priorities of user concurrently capacity.

3. Delay Scheduling Method: Delay scheduling [7] method is
an easiest way to achieve fairness and locality in Schedul-
ing.

4. Deadline Constraint Scheduling Method: This Scheduling
method [10] concentrate on the issue of deadlines but the
main goal is on increasing system utilization.

5. Data Locality aware task Scheduling Method: This sched-
uling [11] start with getting request from requesting data
node. Later, it schedules the task to node whose input da-
ta which is already present on that node. If tasks were un-
able to get then it will again select task which is nearer to
data node. Selected node send the request. Waiting time
of assigning task to the node which consist of input data.

As discussed above the original and the improved task

scheduling strategies does not meet the performance require-
ments like stability, scalability, efficiency and load balancing.
In this paper we have concentrated on the above mentioned
issues in the heterogeneous computing environment. This pa-
per contributes by presenting a flexible task scheduling ap-
proach based on run time workload allocations.

Before that, we have to provide a specification Hadoop fac-
tors and their related settings which is easiest way to imple-
ment job scheduling like fair and capacity scheduling [12]
then, performance issues for these scheduler are measured by
using simulation. Simulation of two job scheduler gives us
response time of executing task either on homogeneous or
heterogeneous cluster of Hadoop. It gives idea that which job
scheduler is better to specific task.here are five task scheduling
strategies widely applicable to Hadoop.

C

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015 368
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Figure 1. Hadoop Workflow

2 RELATED WORK
Some of task scheduling strategies that have been proposed in
recent years:

In 2009, M. Yong et al. [6] introduced task-tracker resource
aware scheduler (TRAS). In this algorithm, each task-tracker
collects its own resource information and then reports the
same to the job-tracker for the next resource scheduling.

Reference [9] proposed a speculative task execution strategy
(STES) in 2005. Even If the cluster has already finished most of
the tasks, few of the tasks may be left due to insufficient
hardware performance and become trailing task. In order to
reduce the influence of trailing tasks on the whole job execu-
tion time, job-tracker will restart copies of trailing tasks run-
ning in parallel; once any one of the task is executed, the
whole job is completed.

In 2013, Z. Tang et al. [16] showed Map reduce task schedul-
ing algorithm for deadline constraint (MTSD), which allows
user to specify a jobs deadline and makes it finished before the
deadline.

A. System Architecture of Hadoop:

Hadoop is made up of two core parts: Hadoop Dis-
tributed File System (HDFS) and MapReduce [13]. HDFS pro-
vides redundant storage of massive amount of data. It pro-
vides reliability through replication. It stores files as block.
HDFS operates on two types of nodes: Namenode (Master)
which stores all metadata and Datanode that stores Files con-
tents in blocks. MapReduce is programming platform for dis-
tributing a task across multiple nodes. It is composed of two
types of nodes: Jobtracker and Tasktracker. Jobtracker coordi-
nates all jobs using default scheduling strategy of Hadoop.
Tasktrackers processes tasks and send reports back to Job-
tracker.

B. Task obtaining and scheduling process of Hadoop:
 To process multiple task at the same time, Hadoop by
default use following task scheduling strategy.
1) Tasktrackers count running tasks.
2) It determines whether running task is less than fix task ca-
pacity or not.
3) Using flag, It determines whether node is available to obtain
new task or not.
 Remote Procedure Call (RPC) method is used by de-
fault by tasktracker that periodically sends heartbeat to job-
tracker. When jobtracker get tasks, it will splits up those tasks
and send them to tasktracker to execute.

C. Problem Analysis
In heterogeneous environment every nodes load changes dy-
namically which means different node performs differently
which may lead to below discussed performance issues:

1) When the node is high performance computing node and

the existing number of running tasks is equal to the allo-
cated fixed slots, the task tracker is not expected to acquire
new tasks. But if the node is still underutilized then which
is a hunger situation and can run more tasks will lead to
waste of resource

2) When the node is a low performance computing node and
the number of tasks running is less than the allocated
fixed slots then the node can acquire new task but if the
node is heavily loaded and cannot host new task which is
a saturation situation will lead to overload

Thus an ideal task scheduling and tracking mechanism which
dynamically adjusts to the load at run time and the node ca-
pability to run tasks and acquire tasks accordingly will im-
prove the clusters performance.

3 FLEXIBLE TASK SCHEDULING ALGORITHM
Whole research is divided into two parts. In first part, we

have worked on simulation of fair scheduler and capacity
scheduler on single cluster and try to find out which scheduler
is better to work on which type of task.

In second part, Our main focus to introduce a novel ap-
proach of task scheduling for heterogeneous Hadoop, where
in a running cluster the task tracker on its own will make the
adjustments to achieve the most optimal state based on
runtime load adjustment for the resource available
The high level steps can be defined as below:
1. Task Tracker periodically weighs its load, which is termed as

heartbeat interval based on predefined load parameters.
2. Dynamic allocation of max allocated slots for the tasks. This

is a deviation from the Hadoop classical approach of one
heartbeat and full allocation.

App

Split1 Split2 Split3

 Task

Tracker
Task
Tracker

Job
Tracker

H
D
F
S

 Task
Tracker

Output

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015 369
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Figure 2. Environment of FTSA

4 ALGORITHM DESCRIPTION
The load parameters considered here are CPU Usage (CU-
sage), Memory Usage (MUsage) and Average Length Of Task
Queue(AvgTQ) these information can be calculated based on
the user-mode time (user), low-priority user-mode time(prior),
system-mode time (sys), idle task-mode time (idle), hard disk
I/O preparing time (ioprep), hardware interrupting time(ihrq),
and software interrupting time (isrq) from the File System of
OS[15].

CUsage = (user+prior+sys)/ total × 100 (I)

total = (user+prior+sys+idle+ioprep+ihrq+isrq) (II)

AvgTQ is a parameters from file /proc/loadavg which reflect
the average task queue length of a single core. The numerator
is the execution time of non-system idle process and denomi-
nator is the total execution time of CPU.

MemUsage=
(MemTotal−MemFree−Buffers−Cache)/MemTotal (III)

The following is the pseudo code of our algorithm

Input: Current tasktracker load information
Max, Min: the maximum and minimum number of
CPU cores of the heterogeneous cluster nodes
Initial value of MaxTasksCapacity
X: heartbeat intervals
Cthre, Lthre: threshold parameter

Output: AskForNewTask, MaxTasksCapacity

1 for (i = 0; i<3; i + +) {
/∗In a heartbeat interval, collect three sets of load
Information, deposit them in a corresponding load
array∗/
2 CpuQueue[i] = ResourceMonitor.getCpuInfo ();
/∗Get CPU utilization by calling getCpuInfo () ∗/
3 AvgTQ [i] =
ResourceMonitor.getLoadAverage ();
4 MemQueue[i] = ResourceMonitor.getMemInfo ();
/∗Get MEM utilization by calling getMemInfo () ∗/
5 Thread.sleep (WaitTime);
/∗Wait forWaitTime, in order to reach information
Acquisition cycle ∗/
6}
7 for (j = 0; j <3; j + +) {
8 countCpu+ = CpuQueue[j];
9 countLoad+ = AvgTQ [j];
10 countMem+ = MemQueue[j];
11}
12 CpuUsage = countCpu/3;
/∗CPU utilization in this heartbeat interval ∗/
13 AvgTQ = countLoad/3;
/∗The average length of single core task queue in this
Heart beat interval ∗/
14 MemUsage = countMem/3;
/∗MEM utilization in this heartbeat interval ∗/
15 if (CpuUsage<Cthre&&AvgTQ<
Lthre&&MemUsage<Mthre) {
/∗Load judgment, get the value of StatusCount∗/
16 StatusCount = StatusCount + 1;
17}
18 HeartBeatCount = HeartBeatCount + 1;
19 AskForNewTask = RunningTasks<
MaxTasksCapacity;
/∗Set the flag of obtaining new task
(AskForNewTask)∗/
20 if (HeartBeatCount == X) {
/∗After reaching X heartbeat intervals, make corresponding
decision ∗/
21 if (MaxTasksCapacity<=Max) {
22 MaxTasksCapacity = MaxTasksCapacity + 1;
23 StatusCount = 0;
24 HeartBeatCount = 0;
25}
26 if (MaxTasksCapacity>=Min) {
27 MaxTasksCapacity = MaxTasksCapacity− 1;
28 StatusCount=0;
29 HeartBeatCount = 0;
30}
31}

Task Sched-
uler

XML-
RPC

XML-
RPC

Task Executing
Module

FTSA

XML-
RPC

Task Executing
Module

FTSA

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015 370
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

5 EVALUATION AND EXPERIMENTAL RESULTS
Evaluation section is segregated in three sections namely, En-
vironment Setup, Execution Parameters and Experimental
Results.

Environment Setup
We used the VMware virtual machine (VM) platform to set up
an experimental pseudo heterogeneous cluster system within
a personal computers. Each VM is configured as a Hadoop
node, and the experimental heterogeneous platform contains 2
nodes with different hardware configurations. There is one
master node with CORE i3 CPUs and 1-GB memory, which
are marked as hadoop217 which is set as Job Tracker, and an-
other data nodes with a core i3 CPU and 1-GB memory, which
are marked as hadoop218. One node with a CORE i3 CPU and
512-MB memory is set as the task tracker. The spaces of hard
disks are all 20 GB. The operating systems installed in all VMs
are Red Hat 5 Enterprise, and the bandwidth of the network is
100 MB. Table I shows the detailed configuration parameters
of nodes.

Table I
Configuration Parameter of Nodes

Node No. CPU Memory

1 Intel Core i3 CPU 1GB
2 Intel Core i3 CPU 1GB
3 Intel Core i3 CPU 512MB

Execution Parameters

As execution parameters [16] we have used following set of
configuration first is Hadoop configuration which we have
defined as default set by Hadoop as shown in Table II.

Table II

Configuration Parameter of Hadoop

Parameter Default Value
dfs.block.size 64MB
dfs.replication 3

dfs.Heartbeat.interval 3s

Experimental Results
Scheduling is a main factor for task execution in Hadoop

environment. For the evaluation of our approach we have fo-
cused on computation intensive job. Our algorithm was tested
for different job sizes and multiple runs for the algorithm was
done the results displayed were for four runs and the time is
computed for each run and finally averaged. The comparative
analysis is provided with four other algorithms whose run
results were calculated from job scheduling simulator named
SLS (Scheduler Load Simulator). As can be analyzed from the
below illustration our approach of flexible task scheduling
considerably reduces the time for execution of Tasks. In order
to guarantee the fairness of experiments, we choose different
sizes (3072, 4096, and 5120 MB) of data to sort. The average
numbers of tasks generated by each task tracker are 96, 128,
and 160, respectively. To further be assured of the results each

set of data is tested four times.
 We compile the source code based on Hadoop-1.2.0
with Eclipse and create the jar (job) using maven. The all jar
deployed on all nodes in both cluster and run word count
program to count similar words from particular file, Teragen
MR job and Terasort MR job using Hadoop cluster and we try
to show all information regarding task like how many mapper
and reducer are formed, what is a response time to execute
task etc. in GUI using hadoop scheduler for e.g. FIFO, Fair,
Capacity Scheduler.
 As discussed in previous work of scheduling, we try
to execute Capacity scheduler practically. And using this, we
implement custom scheduler. Following are the benchmarking
result of capacity scheduler for various job with job run
Information.

 Figure 3 Sample Job Run Information

 Figure 4 Sample Capacity Scheduler Job I

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015 371
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Figure 5 Sample Capacity Scheduler Job II

5 CONCLUSION
As discussed and demonstrated the approach of Flexible Task
scheduling considerably reduces the execution time of the
tasks and also enhances the chances of task completion with-
out failure. The approach is applicable to both heterogeneous
as well as homogeneous Hadoop clusters. Flexibility also in-
duced an additional feature of better load balancing technique
thus avoiding overloading of nodes. Though our approach
assures task completion but failures of tasks or jobs due to
other system parameters cannot be avoided, thus the scope of
better fault tolerance is still open and left for future research.

REFERENCES
[1] Apache. (2012, Aug.). Hadoop, the Apache Software Foundation, ForrestHill,

MD, USA. [Online]. Available: http://hadoop.apache.org/
[2] L. A. Barroso, J. Dean, and U. Holzle, “Web search for a planet: The Google
cluster architecture,” IEEE Micro, vol. 23, no. 2, pp. 22–28, Apr. 2003.
[3] M. Armbrustet al., “A view of cloud computing,” Commun. ACM, vol 53,
no. 4, pp. 50–58, Apr. 2010.
[4] Y. H. Wu, “Research of scheduling policies in cloud computing”, M. S.
 thesis, College Comput, Shanghai Jiao Tong Univ., Shanghai, China, 2011.
[5] Amazon. (2011, May). Amazon Elastic Compute Cloud (Amazon EC2),
Amazon Web Services, Inc., Seattle, WA, USA. [Online]. Available:
http://aws.amazon.com/ec2/
[6] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, “Improving MapReduce
performance in heterogeneous environment”, 8th USENIX Symposium based
on Operating Systems Design and Implementations.
[7] M. Zaharia, Dhruba Borthakur, J. S. Sarma, K.Elmeleegy, “Delay Scheduling:
simple technique to achieving locality and fairness in cluster scheduling”
[8] S. Ghemawat and J. Dean and “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.
[9] T. White, Hadoop: The Definitive Guide. Sebastopol, CA, USA:O’Reilly Media,
2012, pp. 167–188.
[10] Z. Tang, J. Q. Zhou, K. L. Li, and R. X. Li, “MapReduce task scheduling algo-
rithm for deadline constraint,” Cluster Comput., vol. 16, no. 4, pp. 651–662, Dec. 2013.
[11] X. Bu, J. Rao and C. Xu, “Locality-Aware Task Scheduling for MapReduce

Applications in Virtual Clusters”
[12] Matei Zaharia “Job scheduling with fair and capacity schedulin Hadoop
summit 2009
[13] Apache. (2013, Apr.). MapReduce tutorial, The Apache Software Foundation,
Forrest Hill, MD, USA. [Online]. Available:
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
[15] R.Walker, Examining Load Average. Linux Journal, Dec. 2006.
[Online].Available: http://www.linuxjournal.com/article/9001
[14] Apache. (2013, Apr.). MapReduce tutorial, The Apache Software Foundation,
Forrest Hill, MD, USA. [Online]. Available:
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
[16] Apache, “Hadoop,” The Apache Software Foundation, Forrest Hill,
MD,USA,Sep.2012.[Online].Available:
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
common/ClusterSetup.html

IJSER

http://www.ijser.org/
http://aws.amazon.com/ec2/
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html

	1 Introduction
	2 Related Work
	3 Flexible Task Scheduling Algorithm
	4 Algorithm Description
	5 Evaluation and experimental results
	Experimental Results

	5 Conclusion
	References

